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Abstract

Experimental nonobservation of proton decay has led to doubt about a certain class of grand uni�ed theories
predicting this process, eliminating the simplest SU(5) theory of grand uni�cation altogether. Because of this,
theories invoking neutron-antineutron oscillations instead of proton decay have become increasingly popular.
One such theory is the left-right symmetric SU(2)L×SU(2)R×SU(4)c model of partial uni�cation. In order
to explain this model, we draw heavily on Ref. [4]. Since experimental searches for neutron-antineutron
oscillations have not excluded as much phase space as those searching for proton decay, neutron-antineutron
oscillations remain a very viable option for baryon number nonconservation.

1 Introduction
Much has been made in recent years of attempts to classify all Standard Model physics into a larger group
theoretical structure. The Standard Model (SM) as we know it is explained by the group SU(3)c×SU(2)L×
U(1)Y , where SU(3)c describes the strong interactions, while SU(2)L × U(1)Y describes the electroweak
interactions. This latter symmetry is spontaneously broken by the Higgs mechanism to U(1)em giving mass
to three of the gauge bosons (the W 's and the Z mediating weak interactions) and leaving the gauge boson
mediating the electromagnetic force (the photon) massless. The scale of this symmetry breaking is at the
mass scale of the massive gauge bosons, that is MW ∼ 100 GeV. The SM group is rank 4, and therefore any
larger structure in which we embed this group must be at least rank 4 as well. The only viable option of rank
4 is SU(5), making this group the �rst place to look to provide a Grand Uni�ed Theory (GUT) explaining
a larger gauge structure to the SM.

But, what does grand uni�cation add to our understanding of physics? One aspect of a GUT's usefulness
comes in helping to understand why there are three independent gauge couplings in the SM [1]. We have
seen in class that the β functions describing the running of these couplings in the SM are negative for the
weak and strong couplings (implying asymptotic freedom) and positive for the electromagnetic coupling.
These couplings therefore could be expected to meet at some higher scale, called the GUT scale. In fact, in
the SU(5) GUT with a coupling g5, the SM couplings all meet at the scale of SU(5) symmetry breaking and
have the values

g5 = g3 = g =

√
5
3
g′. (1)

Using the known particles from the SM to determine the β functions, we �nd that these couplings all do
become relatively close at some scale between 1013 and 1017 GeV, however they do not exactly intersect.
Adding supersymmetry to the SM changes the β functions (and in fact makes the weak β function become
positive, thus removing asymptotic freedom) and allows these couplings to meet at a scale of 1016 GeV,
interpreted as the scale of SU(5) symmetry breaking, referred to as the GUT scale. See Fig. 1.

With the larger gauge structure provided by SU(5) comes many additional gauge bosons. In fact, it
doubles the number of bosons from 12 in the SM (eight gluons plus the four electroweak bosons) to 24. The
spontaneous symmetry breaking of SU(5) at the GUT scale gives these 12 additional bosons mass, just as
the spontaneous symmetry breaking of SU(2)L × U(1)Y to U(1)em gives mass to the W 's and Z. These 12
extra gauge bosons mediate quark-lepton interactions which are absent in the SM and can lead to e�ective
interactions such as

∆L ∼ εαβγεijεkl

(
q̄C
iαaLqjβbL

) (
q̄C
kγcLlldL

)
, (2)

where α, β, and γ are SU(3) color indices, i, j, k, and l are SU(2) indices, and a, b, c, and d are generation
indices [2]. All such possible interactions found in Ref. [2] conserve B − L (baryon number minus lepton

1



Figure 1: Plot showing the running of the SM couplings at energies above MZ ∼ 100 GeV. The solid lines
correspond to the SM while the dashed lines correspond to having supersymmetry added to the theory (taken
from Ref. [1]).

number) and can lead to a coupling between a u quark and a positron along with a coupling between a d
quark and an ū quark, resulting in the decay of the proton, p → e+π0.

However, experimental nonobservation of proton decay setting a lower limit on the lifetime of the proton
of about 1031 to 1033 years [3] has led to the exclusion of standard SU(5) as a possible GUT. There are many
possibilities to get around this problem, including modifying our gauge structure to allow for longer proton
lifetimes. Another possibility focuses on theories that predict B − L nonconservation, particularly B − L
symmetry breaking by two units. These theories predict the B-violating process of neutron-antineutron
(n-n̄) oscillations in favor of proton decay. n-n̄ oscillations have not been searched for as rigorously as proton
decay and therefore GUTs employing B−L violation are not as restricted by experiment as those predicting
the latter process.

2 An Example of a Uni�cation Group Violating B − L

Since SU(5) is the only viable uni�cation group of rank 4, we instead look at higher rank groups. In
particular, we can look at the left-right symmetric group SU(2)L × SU(2)R × U(1)B−L × SU(3)c embedded
in the partial uni�cation group SU(2)L × SU(2)R × SU(4)c, both of which have rank 5, proposed in Ref.
[4]. Now, this theory starts with the assumption that the weak interactions have parity restored above a
scale of MWR À MWL where the group SU(2)L × SU(2)R ×U(1)L+R spontaneously breaks to the standard
electroweak symmetry of SU(2)L×U(1)Y . We build on this symmetry because the vector U(1) generator in
this model is associated with B − L, instead of the hypercharge Y like in the SM case [4]. Because of this,
the electric charge is given by

Q = I3L + I3R +
1
2

(B − L) , (3)

analogous to the familiar SM relation

Q = I3L +
1
2
Y. (4)

What this implies is that in the low energy region described by the SM, Eq. 3 gives

∆I3R = −1
2
∆ (B − L) , (5)

thus opening the possibility of B − L violation modulo two.
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To provide uni�cation by adding quark-lepton interactions, we take this symmetry and embed it into a
higher gauge structure SU(2)L × SU(2)R × SU(4)c �rst proposed by Pati and Salam with SU(4)c having L
as the fourth color [5]. In our case, however, we will make the fourth color B − L. This symmetry breaks
at a uni�cation scale of MX to SU(2)L × SU(2)R × U(1)B−L × SU(3)c as above, breaking again at a scale
of MWR to SU(2)L × U(1)Y × SU(3)c, which is the SM. Given that MX > MWR À MWL , our uni�cation
group gives the same predictions as the SM at all energies currently probed. To better understand this
symmetry-breaking and exactly how n-n̄ oscillations are allowed in this model, we must �rst understand its
structure a bit more.

If we simplify our model to just one family, the fermions in SU(2)L×SU(2)R×SU(4)c are in the following
representations:

ΨL,i =
(

1
2
, 0, 4

)
(6)

ΨR,i =
(

0,
1
2
, 4

)
, (7)

with i denoting color such that

Ψ =
(

u1 u2 u3 ν
d1 d2 d3 e−

)
. (8)

We call our couplings to the SU(2)'s g = gL = gR, and the coupling to the SU(4) gc. According to Ref.
[4], the breakdown of SU(4)c → U(1)B−L× SU(3)c is accomplished by giving mass to the appropriate gauge
bosons via a Higgs multiplet Σ in the representation (1, 1, 1̄5) with a vacuum expectation value (vev) of
〈Σ〉 = diag(1, 1, 1,−3)MX/gc.

Employing other Higgs multiplets Φ =
(

1
2 , 1

2 , 1
)
, ∆L = (1, 0, 1̄0), and ∆R = (0, 1, 1̄0), we can further

break the symmetry from SU(2)L× SU(2)R ×U(1)B−L× SU(3)c to SU(2)L×U(1)Y × SU(3)c and �nally to
U(1)em × SU(3)c. We can write the ∆'s by expressing them explicitly with their indices, giving ∆a

L,ij and
∆a

R,ij with i and j (with i, j symmetry) the color indices of SU(4)c and a the �avor index. Our spontaneous
symmetry breaking is caused by assigning the following vev's:

〈
∆1+i2

R,44

〉
= v (9)

〈∆L,ij〉 = 0 (10)

〈Φ〉 =
(

κ 0
0 κ′

)
. (11)

The Φ vev causes our typical SM Higgs mechanism, so that MWL = gκ ∼ 100 GeV. The higher scale at
which SU(2)L × SU(2)R ×U(1)B−L × SU(3)c → SU(2)L ×U(1)Y × SU(3)c is at MWR

= gv.
Now, according to Ref. [4], the possible allowed gauge-invariant Yukawa couplings are

LY = ih
(
ΨT

L,iτ2τaC−1ΨL,j∆a
L,ij + ΨT

R,iτ2τaC−1ΨR,j∆a
R,ij

)
+ h1Ψ̄LφΨR + h′1Ψ̄Lφ̃ΨR + h.c. (12)

As an aside, Eq. 12 along with our Higgs vev's lead immediately to a mass matrix for neutrinos giving
MνR = hv = gMWR and mνL = me

2/gMWR . This implies that our SM neutrinos are Majorana particles
and therefore ∆L = 2, as expected [4]. Focusing instead on the hadronic sector, we �rst note that there is a
self-coupling of the ∆'s such that

LS = λ
[
εikmpεjlnq∆a

L,ij∆
a
L,kl∆

b
L,mn∆b

L,pq + (L ↔ R) + h.c.
]
. (13)

Since only the ∆R has a non-zero vev, we note that using the R components of Eq. 13 and Eq. 12 we can
develop a six fermion interaction given by

∆L ∼ heffdT
R,αC−1dR,βdT

R,γC−1dR,λuT
R,ρC

−1uR,σεαλρεβλσ + similar terms, (14)

where heff = λh3 〈∆R,44〉 /M∆R

6. It is this interaction that allows for the ∆B = 2 process of n-n̄ oscillations,
as shown in Fig. 2.
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Figure 2: Diagram of the six fermion interaction of Eq. 14 leading to n-n̄ oscillations (taken from Ref. [4]).

It should be noted that there are other theories predicting n-n̄ oscillations as well. For instance, Ref.
[6] develops a means of using an SU(5) invariant theory to violate B − L conservation. Further, just as
typical GUTs are improved by adding supersymmetry (allowing the couplings to meet at the GUT scale),
the left-right symmetric model discussed can also be augmented by supersymmetry [7]. On top of improving
the running of the SM couplings, the supersymmetric left-right symmetric (SUSYLR) model has the added
bene�t of improving upon the hierarchy of neutrino masses. In the non-supersymmetric case, using the
seesaw mechanism to provide neutrino masses requires a νR mass scale of MWR

, giving a neutrino mass
hierarchy in the eV-keV-MeV range. While this is quite unappealing, adding SUSY to the picture allows a
lower νR mass scale giving neutrino masses in the meV to eV range [7]. In short, there are many interesting
GUTs employing n-n̄ oscillations rather than proton decay that lead to exciting physical possibilities in
explaining things such as neutrino masses at the same time as predicting B-nonconservation.

3 Detecting n-n̄ Oscillations
The phenomenon of n-n̄ oscillations is considerably altered in the presence of external �elds. For instance,
unbound neutrons in terrestrial experiments are still a�ected by the earth's magnetic �eld, decreasing the
probability of oscillation. In the same way, neutrons bound within nuclei experience a similar increase in
their oscillation time. In fact, the free n-n̄ oscillation time (τnn̄) is related to the nuclear lifetime associated
with n-n̄ oscillations in nuclei (T ) by

T = τnn̄
2TR, (15)

where TR is a nuclear suppression factor which varies for di�erent nuclei (see, for example, Ref. [8]).
As seen in Ref. [9], for free neutrons which are part of a double state ψ =

(
n
n̄

)
, the mass Lagrangian

is given by

Lmass = ψ̄Mψ (16)

where M is the mass matrix given by

M =
(

A δm
δm A

)
. (17)

A non-zero value of δm in Eq. 17 results from n-n̄ oscillations. The mass eigenstates are

n1,2 =
1√
2

(n± n̄) (18)

with masses

m1,2 = A± δm. (19)
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Calculating the probability of n-n̄ oscillation is analogous to neutrino oscillation probability calculation.
Neutrons and antineutrons are in an initial state

|n(n̄)〉 =
1√
2

(|n1〉 ± |n2〉) . (20)

If we start with a decaying (with decay width γ) neutron and propagate each state in time using e−imt, we
�nd that the state at a time t is

|n (t)〉 =
e−γt/2

√
2

(|n1〉 e−im1t + |n2〉 e−im2t
)

=
e−γt/2

√
2

e−im1t
(|n1〉+ |n2〉 e2iδmt

)
. (21)

The amplitude of oscillation in an n̄ state is given by

〈n̄|n (t)〉 =
e−γt/2

2
e−im1t (〈n1| − 〈n2|)

(|n1〉+ |n2〉 e2iδmt
)

=
e−γt/2

2
e−im1t

(
1− e2iδmt

)
, (22)

and therefore the oscillation probability is

Pnn̄ = |〈n̄|n (t)〉|2

=
e−γt

2
(1− cos 2δmt) . (23)

Thus determining the probability of n-n̄ oscillations experimentally will also give the mass splitting between
the neutron and antineutron.

There are many way in which one can search for n-n̄ oscillations in experiment, both by observing �free�
neutrons in a beam (see, for example, Ref. [10]) and by observing neutrons bound within nuclei (see, for
example, Ref. [11]). As noted in Eq. 15, the time-scale for the latter process is considerably longer than
that of the former, however it is quite easy to collect a large quantity of nuclei and wait for an annihilation
signature. In fact, nonobservation of n-n̄ oscillations in both types of experiments has led to similar limits on
τnn̄: τnn̄ > 0.86× 108 s for free neutrons [10] and τnn̄ > 1.3× 108 s for bound neutrons [11]. It has also been
noted that with the excess of neutrons due to the deuterium in the heavy water used in the Sudbury Neutrino
Observatory (SNO), a similar search can be performed to that in Ref. [11]. By conservative estimates, an
experimental search for n-n̄ oscillations in SNO, if it were carried out, would increase this limit to at least
τnn̄ > 2× 108 s [12].

SNO is a heavy water Čerenkov detector employing an array of approximately 10000 photomultiplier
tubes (PMTs) to detect Čerenkov light from particles associated primarily with neutrino interactions [13].
However, these PMTs can also be employed to detect Čerenkov light generated from multiple pions resulting
from an antineutron-nucleon annihilation after an n-n̄ oscillation occurs in a nucleus. The experimental
signature of such an event would be a multiple ring pattern in the PMTs. The systematics of performing
this search are worked out in Ref. [12].

4 Conclusion
While many attempts at grand uni�cation predict B-violation (but a conservation of B − L) resulting in
proton decay, still others predict B − L breaking by two units resulting in n-n̄ oscillations. The latter have
become more appealing as of late due to the experimental nonobservation of proton decay up to a time
scale of 1031 to 1033 years. In comparison, the lower limit on the n-n̄ oscillation time in free space is only
approximately 108 seconds. Further, models predicting n-n̄ oscillations such as the left-right symmetric
SU(2)L × SU(2)R × SU(4)c model of partial uni�cation provide other compelling explanations of physical
phenomena like the generation of neutrino masses. Better experimental searches for n-n̄ oscillations such as
the one proposed in Ref. [12] should be encouraged along with improvements to limits set on the proton
lifetime in limiting the possible theories providing a uni�ed understanding of particle physics.
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